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AMBER Task Force
To bring in contractual specifications, the accuracy of the 
absolute visibility, of the differential and of the closure 
phases through a fundamental analysis of the instrument 
status and limitations.

A run took place in Feb 2008 to solve this issue and...



AMBER observations of σ Puppis

Fig. 2. Visibility of σPuppis as a function of the spatial frequency. All
measurements have been obtained without FINITO, except those in the
second lobe (see Sect. 2.2 for details). The full curve corresponds to the
best fit with a single uniform disk model of diameter 6.436mas.

Fig. 3. Phase closure of σPuppis as a function of the largest spatial fre-
quency of the closure triangle. The white circles have been obtained
with FINITO and the black circle without. Note the slight shift be-
tween the two phase closure systems (see Sect. 2.2 for details). The full
curve corresponds to the best fit of the phase closure system, obtained
without fringe tracker, with a single uniform disk model with diameter
6.451mas

latter being computed as the ratio of the baseline and the wave-
length. The measurements are reasonably uniformly spread over
the working frequency range, with a set of measurements at min-
imum visibility, and a measurement obtained with the fringe
tracker in the second lobe.

The five (spectrally-dispersed) phase closures measured just
before, during and after the minimum of visibility are of very
good quality. They are each corrected from the phase closure
measured on a calibrator close in time and filtered. The main
error is also due to the calibration estimated to be less then a
few hundredths of radians, due to the excellent stability of the
phase closure during the night. To increase the signal to noise
ratio especially at minimumof visibility and in absence of instru-
mental biases we average the phase closure within an interval of
1 arcsec−1. The error associated to each point is then fixed by the
dispersion of the measurements within the averaging interval.

Figure 3 shows the phase closure systems obtained, with
FINITO the first night (open circles) and without FINITO the
second night (black dots). The two systems, observed as they
were for a different purpose than the one exposed here, under
different conditions, sample quite regularly the available range
of spatial frequencies.

The step of π radians in phase closure can be clearly seen
when the spatial frequency of long baseline of the closure trian-

Fig. 4. Best model parameters from visibility fit with an extended uni-
form disk and a point source (see Sect. 3.1 for details). From top to
bottom as a function of the separation: minimum χ2, best flux ratio and
best stellar diameter.

gle is within the first or the second lobe of the star disk Bessel
function. The figure shows also that the second night middle
observation was taken at a time when the long baseline of the
closure triangle was crossing the first zero. It can be seen that
the transition between the 0 and π values is smooth, markedly
different from the expected abrupt step arising from a centrally
symmetric flux distribution only.

3. Results

The smooth phase closure transition around the first zero in
Fig. 3 is the signature of a departure from a centrally-symmetric
object. This is quite expected in a spectroscopic binary, and we
can use these observations to retrieve the geometrical character-
istics of the system.

To do this, we fit the visibility and the phase closure data
with a simple model formed by an extended uniform disk and a
point source. Given that our observations are basically east-west,
we cannot derive the position angle of the system, but only the
projected distance along the direction of observation. In princi-
ple, we could also determine the direction of the system from the
sign of the phase closure, but the phase closure sign for AMBER
has not yet been calibrated. Hence our model is described by 3
parameters: the stellar diameter, the distance of the companion
and the flux ratio.

3.1. Visibility data

To estimate the system parameters, we minimize a standard χ2

defined as the distance between the visibilities of the model and
those of the data, weighted by the noise derived from Fig. 1. We
exclude from the fit the set of points around minimum visibil-
ity as they may easily be biased. A rapid study of the problem
shows that the χ2 has minima as a function of the distance with
a peudo-period p ≈ f −1

min
, where f −1

min
is the frequency of min-

imum visibility. Hence to produce comprehensible output, we
vary the separation from 0 to 0.1 arcsec, and for each separation,
we perform a fit with two parameters, the stellar diameter and
the flux ratio. The minimum χ2, the best stellar diameters and

Θ=6.436 mas

with FINITO



Closure phases on σ Puppis
Fig. 2. Visibility of σPuppis as a function of the spatial frequency. All
measurements have been obtained without FINITO, except those in the
second lobe (see Sect. 2.2 for details). The full curve corresponds to the
best fit with a single uniform disk model of diameter 6.436mas.

Fig. 3. Phase closure of σPuppis as a function of the largest spatial fre-
quency of the closure triangle. The white circles have been obtained
with FINITO and the black circle without. Note the slight shift be-
tween the two phase closure systems (see Sect. 2.2 for details). The full
curve corresponds to the best fit of the phase closure system, obtained
without fringe tracker, with a single uniform disk model with diameter
6.451mas

latter being computed as the ratio of the baseline and the wave-
length. The measurements are reasonably uniformly spread over
the working frequency range, with a set of measurements at min-
imum visibility, and a measurement obtained with the fringe
tracker in the second lobe.

The five (spectrally-dispersed) phase closures measured just
before, during and after the minimum of visibility are of very
good quality. They are each corrected from the phase closure
measured on a calibrator close in time and filtered. The main
error is also due to the calibration estimated to be less then a
few hundredths of radians, due to the excellent stability of the
phase closure during the night. To increase the signal to noise
ratio especially at minimumof visibility and in absence of instru-
mental biases we average the phase closure within an interval of
1 arcsec−1. The error associated to each point is then fixed by the
dispersion of the measurements within the averaging interval.

Figure 3 shows the phase closure systems obtained, with
FINITO the first night (open circles) and without FINITO the
second night (black dots). The two systems, observed as they
were for a different purpose than the one exposed here, under
different conditions, sample quite regularly the available range
of spatial frequencies.

The step of π radians in phase closure can be clearly seen
when the spatial frequency of long baseline of the closure trian-

Fig. 4. Best model parameters from visibility fit with an extended uni-
form disk and a point source (see Sect. 3.1 for details). From top to
bottom as a function of the separation: minimum χ2, best flux ratio and
best stellar diameter.

gle is within the first or the second lobe of the star disk Bessel
function. The figure shows also that the second night middle
observation was taken at a time when the long baseline of the
closure triangle was crossing the first zero. It can be seen that
the transition between the 0 and π values is smooth, markedly
different from the expected abrupt step arising from a centrally
symmetric flux distribution only.

3. Results

The smooth phase closure transition around the first zero in
Fig. 3 is the signature of a departure from a centrally-symmetric
object. This is quite expected in a spectroscopic binary, and we
can use these observations to retrieve the geometrical character-
istics of the system.

To do this, we fit the visibility and the phase closure data
with a simple model formed by an extended uniform disk and a
point source. Given that our observations are basically east-west,
we cannot derive the position angle of the system, but only the
projected distance along the direction of observation. In princi-
ple, we could also determine the direction of the system from the
sign of the phase closure, but the phase closure sign for AMBER
has not yet been calibrated. Hence our model is described by 3
parameters: the stellar diameter, the distance of the companion
and the flux ratio.

3.1. Visibility data

To estimate the system parameters, we minimize a standard χ2

defined as the distance between the visibilities of the model and
those of the data, weighted by the noise derived from Fig. 1. We
exclude from the fit the set of points around minimum visibil-
ity as they may easily be biased. A rapid study of the problem
shows that the χ2 has minima as a function of the distance with
a peudo-period p ≈ f −1

min
, where f −1

min
is the frequency of min-

imum visibility. Hence to produce comprehensible output, we
vary the separation from 0 to 0.1 arcsec, and for each separation,
we perform a fit with two parameters, the stellar diameter and
the flux ratio. The minimum χ2, the best stellar diameters and

with FINITO

Θ=6.451 mas



Principle of interferometry



Principle of interferometry

Visibility 
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Spatial coherence

Interferogram 1

Interferogram 2

Reduced contrast
Shifted phase

Zernicke-van Cittert theorem
Visibility = Fourier transform of the brightness spatial distribution 

Complex coherent fluxes add, not just visibilities: NVejΦ = N1V1ejΦ1 + N2V2ejΦ2

Visibility amplitude



Fresnel vectors
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Complex visibility of a resolved star 
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Complex visibility of a double system
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Complex visibility of a double system
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Complex visibility of a double system
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Complex visibility of a double system
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Phase of a faint companion near the null
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Phase closure and closure phases
- Phase cannot be calibrated on ground interferometers 

because of the random atmospheric phase φ.

     Φ12 = (φ1 - φ2 ) + Φo
12 

- With 3 telescopes, it is possible to close the phases. 
on a triplet of telescopes.

-  We use a variable, called the closure phase:

      Φc = Φ12 + Φ23 + Φ31 

-   The closure phase is independant of atmophere:

      Φc = Φo
12 + Φo

23 + Φo
31



Phase closure principle
from Zhao et al. (SPIE 2008)



Closure phase near the null of σ Pup



Closure phase near the null

Fig. 2. Phase closure modulo 2π of a double system, formed by an ex-
tended uniform disk and a point source, as a function of the maximum
frequency. The spectral resolution is R = 1500. The 3 frequencies have
been chosen is the ratio 1,2,3, with the maximum frequency around the
first zero of visibility of the primary star. The phase closure is displayed
for 3 separations (10R", 100R" and 1000R") and a flux ratio of 0.01.
The signature of the secondary source is dominant in the region around
the minimum visibility of the primary (near reduced frequency 0.61)

where ∗ denotes the complex conjugate, and <> represents an
ensemble average. The phase closure has two important proper-
ties: it is insensitive to atmospheric phase fluctuations, and for a
point source, it is equal to zero. Then, for an extended object, it
is given by:

φc = φo(u12) + φo(u23) − φo(u13) (6)

where φo is the phase of the object spatial Fourier transform.
If the telescopes are aligned with baselines parallel to the

direction of the double system, the phase closure may be written:

φc ≈
rsin(2πu12s)

V"(u12)
+
rsin(2πu23s)

V"(u23)
−
rsin(2πu13s)

V"(u13)
+

(n12 + n23 − n13)π (7)

Figure 2 shows the expected phase closure, around the first vis-
ibility null, from a double system with a flux ratio of 1% and
various separations. The system is observed with a spectral res-
olution of 1500, like the one available with the AMBER instru-
ment at the VLTI (Petrov et al. 2007). Note the importance of
the phase closure signature from the companion.

3. Phase closure nulling

3.1. Principle

In the case of a binary system formed by an extended uniform
disk and a point source, the useful phase closure signal is the
departure from 0 or 180 degrees. We have then clearly interest
to select the working frequency interval at the highest frequen-
cies, around visibility nulls at u = u0, where the phase closure
signature of the companion is maximum. In these regions, there
is always (as the stellar visibility crosses the zero), a frequency
interval within which the useful signal is larger than any system-
atic error, and hence becomes measurable.

Figure 4 shows the useful phase closure signal, for various
flux ratios and distances of 10, 100, and 1000 stellar radii. The
horizontal lines correspond to a given systematic error of 0.1
degree. The frequency interval within which the useful signal is
larger than this error diminishes rapidly with the flux ratio, but
is always present.

Fig. 3. Absolute value of the useful phase closure signal of a double
system formed by a uniform disk and a point source as a function of the
largest frequency located around the first visibility null of the primary.
The spectral resolution is R = 1500. The phase closure of the uniform
disk has been subtracted for clarity. From top to bottom, the flux ra-
tio varies from 10−3 to 10−6 and 3 separations are considered: 10R"
(full lines), 100R" (dashed lines) 1000R" (dotted lines). The horizon-
tal lines are set to a given systematic error of 0.1 degree, showing the
regions where the phase closure signature of the secondary becomes
measurable.

We propose to use the regions around minima of visibility,
where the phase closure nulling of the primary is effective, and
the useful signal is larger than the limit σsys imposed by system-
atic errors, to detect and to characterize faint companions. Doing
so, we do not cancel the stellar flux as in classical nulling exper-
iments (Bracewell 1978), but we only cancel the stellar coherent
flux. The main limiting noise will then be the photon noise from
the central star, as shown in Sect. 3.3.

3.2. Spectroscopy of close companions

Spectroscopy of close companions may be extracted from spec-
trally dispersed phase closure measurements obtained with a Ntel
telescopes interferometer (Ntel≥3). The baselines should be such
that the longest one corresponds to a null of the pprimary star
in order to maximize the useful signal. As an example, an inter-
ferometer with 3 telescopes and frequencies in the ratio 1:2:3,
allowing bootstrapping, would be a very efficient system. The
data consists of spectrally dispersed phase closuremeasurements
performed as a function of the spatial frequency.

The double system is characterized by 4 parameters: the stel-
lar radius R", the flux ratio r, the separation s, and the position
angle. The 4 parameters may be extracted from a modeling of
the phase closure variations as a function of both the spatial fre-
quency and the wavelength. The spectrum of the companion is
then obtained multiplying the flux ratio by the spectrum of the
primary.

Flux ratio of 0.01



Various flux ratios

Fig. 2. Phase closure modulo 2π of a double system, formed by an ex-
tended uniform disk and a point source, as a function of the maximum
frequency. The spectral resolution is R = 1500. The 3 frequencies have
been chosen is the ratio 1,2,3, with the maximum frequency around the
first zero of visibility of the primary star. The phase closure is displayed
for 3 separations (10R", 100R" and 1000R") and a flux ratio of 0.01.
The signature of the secondary source is dominant in the region around
the minimum visibility of the primary (near reduced frequency 0.61)

where ∗ denotes the complex conjugate, and <> represents an
ensemble average. The phase closure has two important proper-
ties: it is insensitive to atmospheric phase fluctuations, and for a
point source, it is equal to zero. Then, for an extended object, it
is given by:

φc = φo(u12) + φo(u23) − φo(u13) (6)

where φo is the phase of the object spatial Fourier transform.
If the telescopes are aligned with baselines parallel to the

direction of the double system, the phase closure may be written:

φc ≈
rsin(2πu12s)

V"(u12)
+
rsin(2πu23s)

V"(u23)
−
rsin(2πu13s)

V"(u13)
+

(n12 + n23 − n13)π (7)

Figure 2 shows the expected phase closure, around the first vis-
ibility null, from a double system with a flux ratio of 1% and
various separations. The system is observed with a spectral res-
olution of 1500, like the one available with the AMBER instru-
ment at the VLTI (Petrov et al. 2007). Note the importance of
the phase closure signature from the companion.

3. Phase closure nulling

3.1. Principle

In the case of a binary system formed by an extended uniform
disk and a point source, the useful phase closure signal is the
departure from 0 or 180 degrees. We have then clearly interest
to select the working frequency interval at the highest frequen-
cies, around visibility nulls at u = u0, where the phase closure
signature of the companion is maximum. In these regions, there
is always (as the stellar visibility crosses the zero), a frequency
interval within which the useful signal is larger than any system-
atic error, and hence becomes measurable.

Figure 4 shows the useful phase closure signal, for various
flux ratios and distances of 10, 100, and 1000 stellar radii. The
horizontal lines correspond to a given systematic error of 0.1
degree. The frequency interval within which the useful signal is
larger than this error diminishes rapidly with the flux ratio, but
is always present.

Fig. 3. Absolute value of the useful phase closure signal of a double
system formed by a uniform disk and a point source as a function of the
largest frequency located around the first visibility null of the primary.
The spectral resolution is R = 1500. The phase closure of the uniform
disk has been subtracted for clarity. From top to bottom, the flux ra-
tio varies from 10−3 to 10−6 and 3 separations are considered: 10R"
(full lines), 100R" (dashed lines) 1000R" (dotted lines). The horizon-
tal lines are set to a given systematic error of 0.1 degree, showing the
regions where the phase closure signature of the secondary becomes
measurable.

We propose to use the regions around minima of visibility,
where the phase closure nulling of the primary is effective, and
the useful signal is larger than the limit σsys imposed by system-
atic errors, to detect and to characterize faint companions. Doing
so, we do not cancel the stellar flux as in classical nulling exper-
iments (Bracewell 1978), but we only cancel the stellar coherent
flux. The main limiting noise will then be the photon noise from
the central star, as shown in Sect. 3.3.

3.2. Spectroscopy of close companions

Spectroscopy of close companions may be extracted from spec-
trally dispersed phase closure measurements obtained with a Ntel
telescopes interferometer (Ntel≥3). The baselines should be such
that the longest one corresponds to a null of the pprimary star
in order to maximize the useful signal. As an example, an inter-
ferometer with 3 telescopes and frequencies in the ratio 1:2:3,
allowing bootstrapping, would be a very efficient system. The
data consists of spectrally dispersed phase closuremeasurements
performed as a function of the spatial frequency.

The double system is characterized by 4 parameters: the stel-
lar radius R", the flux ratio r, the separation s, and the position
angle. The 4 parameters may be extracted from a modeling of
the phase closure variations as a function of both the spatial fre-
quency and the wavelength. The spectrum of the companion is
then obtained multiplying the flux ratio by the spectrum of the
primary.

For clarity the closure phase 
of the star has been 

subtracted



Various flux ratios

Fig. 2. Phase closure modulo 2π of a double system, formed by an ex-
tended uniform disk and a point source, as a function of the maximum
frequency. The spectral resolution is R = 1500. The 3 frequencies have
been chosen is the ratio 1,2,3, with the maximum frequency around the
first zero of visibility of the primary star. The phase closure is displayed
for 3 separations (10R", 100R" and 1000R") and a flux ratio of 0.01.
The signature of the secondary source is dominant in the region around
the minimum visibility of the primary (near reduced frequency 0.61)

where ∗ denotes the complex conjugate, and <> represents an
ensemble average. The phase closure has two important proper-
ties: it is insensitive to atmospheric phase fluctuations, and for a
point source, it is equal to zero. Then, for an extended object, it
is given by:

φc = φo(u12) + φo(u23) − φo(u13) (6)

where φo is the phase of the object spatial Fourier transform.
If the telescopes are aligned with baselines parallel to the

direction of the double system, the phase closure may be written:

φc ≈
rsin(2πu12s)

V"(u12)
+
rsin(2πu23s)

V"(u23)
−
rsin(2πu13s)

V"(u13)
+

(n12 + n23 − n13)π (7)

Figure 2 shows the expected phase closure, around the first vis-
ibility null, from a double system with a flux ratio of 1% and
various separations. The system is observed with a spectral res-
olution of 1500, like the one available with the AMBER instru-
ment at the VLTI (Petrov et al. 2007). Note the importance of
the phase closure signature from the companion.

3. Phase closure nulling

3.1. Principle

In the case of a binary system formed by an extended uniform
disk and a point source, the useful phase closure signal is the
departure from 0 or 180 degrees. We have then clearly interest
to select the working frequency interval at the highest frequen-
cies, around visibility nulls at u = u0, where the phase closure
signature of the companion is maximum. In these regions, there
is always (as the stellar visibility crosses the zero), a frequency
interval within which the useful signal is larger than any system-
atic error, and hence becomes measurable.

Figure 4 shows the useful phase closure signal, for various
flux ratios and distances of 10, 100, and 1000 stellar radii. The
horizontal lines correspond to a given systematic error of 0.1
degree. The frequency interval within which the useful signal is
larger than this error diminishes rapidly with the flux ratio, but
is always present.

Fig. 3. Absolute value of the useful phase closure signal of a double
system formed by a uniform disk and a point source as a function of the
largest frequency located around the first visibility null of the primary.
The spectral resolution is R = 1500. The phase closure of the uniform
disk has been subtracted for clarity. From top to bottom, the flux ra-
tio varies from 10−3 to 10−6 and 3 separations are considered: 10R"
(full lines), 100R" (dashed lines) 1000R" (dotted lines). The horizon-
tal lines are set to a given systematic error of 0.1 degree, showing the
regions where the phase closure signature of the secondary becomes
measurable.

We propose to use the regions around minima of visibility,
where the phase closure nulling of the primary is effective, and
the useful signal is larger than the limit σsys imposed by system-
atic errors, to detect and to characterize faint companions. Doing
so, we do not cancel the stellar flux as in classical nulling exper-
iments (Bracewell 1978), but we only cancel the stellar coherent
flux. The main limiting noise will then be the photon noise from
the central star, as shown in Sect. 3.3.

3.2. Spectroscopy of close companions

Spectroscopy of close companions may be extracted from spec-
trally dispersed phase closure measurements obtained with a Ntel
telescopes interferometer (Ntel≥3). The baselines should be such
that the longest one corresponds to a null of the pprimary star
in order to maximize the useful signal. As an example, an inter-
ferometer with 3 telescopes and frequencies in the ratio 1:2:3,
allowing bootstrapping, would be a very efficient system. The
data consists of spectrally dispersed phase closuremeasurements
performed as a function of the spatial frequency.

The double system is characterized by 4 parameters: the stel-
lar radius R", the flux ratio r, the separation s, and the position
angle. The 4 parameters may be extracted from a modeling of
the phase closure variations as a function of both the spatial fre-
quency and the wavelength. The spectrum of the companion is
then obtained multiplying the flux ratio by the spectrum of the
primary.

For clarity the closure phase 
of the star has been 

subtracted

Systematics: 0.1deg



Various flux ratios

Fig. 2. Phase closure modulo 2π of a double system, formed by an ex-
tended uniform disk and a point source, as a function of the maximum
frequency. The spectral resolution is R = 1500. The 3 frequencies have
been chosen is the ratio 1,2,3, with the maximum frequency around the
first zero of visibility of the primary star. The phase closure is displayed
for 3 separations (10R", 100R" and 1000R") and a flux ratio of 0.01.
The signature of the secondary source is dominant in the region around
the minimum visibility of the primary (near reduced frequency 0.61)

where ∗ denotes the complex conjugate, and <> represents an
ensemble average. The phase closure has two important proper-
ties: it is insensitive to atmospheric phase fluctuations, and for a
point source, it is equal to zero. Then, for an extended object, it
is given by:

φc = φo(u12) + φo(u23) − φo(u13) (6)

where φo is the phase of the object spatial Fourier transform.
If the telescopes are aligned with baselines parallel to the

direction of the double system, the phase closure may be written:

φc ≈
rsin(2πu12s)

V"(u12)
+
rsin(2πu23s)

V"(u23)
−
rsin(2πu13s)

V"(u13)
+

(n12 + n23 − n13)π (7)

Figure 2 shows the expected phase closure, around the first vis-
ibility null, from a double system with a flux ratio of 1% and
various separations. The system is observed with a spectral res-
olution of 1500, like the one available with the AMBER instru-
ment at the VLTI (Petrov et al. 2007). Note the importance of
the phase closure signature from the companion.

3. Phase closure nulling

3.1. Principle

In the case of a binary system formed by an extended uniform
disk and a point source, the useful phase closure signal is the
departure from 0 or 180 degrees. We have then clearly interest
to select the working frequency interval at the highest frequen-
cies, around visibility nulls at u = u0, where the phase closure
signature of the companion is maximum. In these regions, there
is always (as the stellar visibility crosses the zero), a frequency
interval within which the useful signal is larger than any system-
atic error, and hence becomes measurable.

Figure 4 shows the useful phase closure signal, for various
flux ratios and distances of 10, 100, and 1000 stellar radii. The
horizontal lines correspond to a given systematic error of 0.1
degree. The frequency interval within which the useful signal is
larger than this error diminishes rapidly with the flux ratio, but
is always present.

Fig. 3. Absolute value of the useful phase closure signal of a double
system formed by a uniform disk and a point source as a function of the
largest frequency located around the first visibility null of the primary.
The spectral resolution is R = 1500. The phase closure of the uniform
disk has been subtracted for clarity. From top to bottom, the flux ra-
tio varies from 10−3 to 10−6 and 3 separations are considered: 10R"
(full lines), 100R" (dashed lines) 1000R" (dotted lines). The horizon-
tal lines are set to a given systematic error of 0.1 degree, showing the
regions where the phase closure signature of the secondary becomes
measurable.

We propose to use the regions around minima of visibility,
where the phase closure nulling of the primary is effective, and
the useful signal is larger than the limit σsys imposed by system-
atic errors, to detect and to characterize faint companions. Doing
so, we do not cancel the stellar flux as in classical nulling exper-
iments (Bracewell 1978), but we only cancel the stellar coherent
flux. The main limiting noise will then be the photon noise from
the central star, as shown in Sect. 3.3.

3.2. Spectroscopy of close companions

Spectroscopy of close companions may be extracted from spec-
trally dispersed phase closure measurements obtained with a Ntel
telescopes interferometer (Ntel≥3). The baselines should be such
that the longest one corresponds to a null of the pprimary star
in order to maximize the useful signal. As an example, an inter-
ferometer with 3 telescopes and frequencies in the ratio 1:2:3,
allowing bootstrapping, would be a very efficient system. The
data consists of spectrally dispersed phase closuremeasurements
performed as a function of the spatial frequency.

The double system is characterized by 4 parameters: the stel-
lar radius R", the flux ratio r, the separation s, and the position
angle. The 4 parameters may be extracted from a modeling of
the phase closure variations as a function of both the spatial fre-
quency and the wavelength. The spectrum of the companion is
then obtained multiplying the flux ratio by the spectrum of the
primary.

For clarity the closure phase 
of the star has been 

subtracted
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The phase is amplified by a 
gain of 1/V*

Closure phase above 
systematics in a limited 

range.



Signal-to-noise ratios
- Neglecting the coupling between the photon noise and 

the detector noise and retaining the dominant terms, 
the variance of the phase closure is:

- The signal Φc being proportional to r/V*, then there is no 
gain in SNR in the null. We still have to integrate enough 
to get the signal out of photon and detector noises.



How to retrieve the companion parameters?

- The double system is characterized by 4 parameters: 

• the stellar radius R* , 
• the flux ratio r between the star and the companion,
• the separation s of the companion,
• and the position angle PA.

-  The 4 parameters may be extracted from a modeling of 
the closure phase variations as a function of both the 
spatial frequency and the wavelength. 

- The spectrum of the companion is then obtained by 
multiplying the flux ratio by the spectrum of the 
primary.



The case of σ Pup

- Magintude difference: Δm ~ 5 mag

- Only one baseline:

• projected separation only
• No position angle

- No measurements at null the 2nd night: no orbit motion

Fig. 5. Best model parameters from phase closure fit with an extended
uniform disk and a point source (see Sect. 3.2 for details). From top
to bottom as a function of the separation: minimum χ2, best flux ratio
and best stellar diameter. The dotted lines correspond to the best fit with
free parameters, the full lines correspond to the best fit with a restricted
stellar diameter to the range 6.42–6.48mas imposed by visibility mod-
elling.

flux ratios are displayed in Fig. 4 as a function of the separation.
The χ2 presents a set of roughly regularly spaced minima, with
6 marked minima below 40mas at: 8.2, 13.4, 17.7, 22.1, 27.1
and 36.2mas. If we except the singular point around 3mas in-
side the stellar disc, the range of possible stellar diameters for
all the separations is 6.45±0.03mas. However, if we restrict our
attention to the minima of the χ2, the stellar diameter becomes
6.44± 0.02mas. This value also corresponds to the output of the
fit with a single uniform disk model of 6.436mas (see Fig. 2).
The possible flux ratios range from 0 to 6 × 10−3 for all separa-
tions and from 2 × 10−3 to 6 × 10−3 at minima, the smaller the
separation the higher the flux ratio.

3.2. Phase closure data

Figure 3 shows that the two phase closure systems obtained dur-
ing the two consecutive nights are slightly shifted with respect
to each other, by about 0.13 radians before the minimum and
0.24 radians after. These values are well above the main error
bar of a few hundredth of radian due to the calibration. This shift,
that we attribute to a change of the system separation from the
first to the second night, will be discussed in Sect. 4. The phase
closure measured the first night does not allow to constraint the
parameters of the double system as we have no information on
the transition. Hence, we only model the phase closure for the
second night. The best fit of the phase closure systems with a
single uniform disk model provides a diameter of 6.451mas in
excellent agreement with the value of 6.436mas derived from
visibility data.

The minimum χ2 of a two-component model, the best stellar
diameters and flux ratios are displayed in Fig. 5 as a function
of the separation. We performed two sets of fits: one with free
parameters (dotted lines), the other with a diameter restricted
to the values 6.44 ± 0.02 (full lines). The minimum χ2 exhibits
regularly spaced deep minima indicating possible values for the
separation. The position of the minima is fairly robust as it does

Fig. 6. Best fit of the phase closure for different flux ratios showing that
the slope of the transition cannot be reproduced with flux ratios smaller
than 5 × 10−3

not change significantly, when we restrict the excursion of the di-
ameter. With free parameters, the stellar diameter range between
6.2 and 6.7mas. It is not well constrained because we have not
the full transition, but only pieces of it. The flux ratio varies be-
tween 7 × 10−3 and 3 × 10−2. But, within the acceptable values
for the diameter, it ranges between 6 × 10−3 and 1.3 × 10−2.

In Fig. 6, we plotted the phase closure together with the best
fit for various flux ratio. A careful examination of the fits shows
that a flux ratio ≥ 5 × 10−3 is required to reproduce the slope of
the transition. This limit excludes separations larger than 30mas
as it would produce oscillations (see Fig. 2 of Paper I) that are
not seen on the visibility, especially those in the second lobe. At
smaller separations, only 3 minima of the phase closure χ2 coin-
cide within 1mas with those of the visibility, at: −21.9, 8.3 and
13.7mas. These are the possible separations, with a preference
for the shorter separations at 8.3 and 13.7mas. At these minima,
the mean flux ratio is then 5 × 10−3 for visibility, and, 2 × 10−2

for phase closure data respectively. Hence, within a factor of 2,
the flux ratio is 10−2 or 5magnitudes.

4. Discussion

σ Puppis is a K5 III single-lined spectroscopic binary located at
56.3 pc, with a period of 257.8 days first obtained by Wilson
(1918), who derived a reduced mass of 0.164M$ for the sys-
tem from radial velocity measurements. Its photometric orbit has
been fitted using Hipparcos Intermediate Astrometric Data by
Jancart et al. (2005, see Table 2 for values), and it is also listed
as an eclipsing binary (Otero 2008) with the same period of 258
days, although with a very small (< 0.04mag) excursion in V.

4.1. Stellar diameter of the primary

Our observations give an uniform disk diameter of 6.44 ±
0.02mas for the size of the primary. This is in slight disagree-
ment with the value (θUD = 6.66 ± 0.1)mas quoted in the
CHARM2 catalog (Richichi et al. 2005). This is understandable
since the CHARM2 value is a diameter estimated from photome-
try, not actually measured. Howeverwe note that the SearchCal
utility (Bonneau et al. 2006), based also on photometries, but
using different estimators, expects an uniform disk diameter of
6.36mas.

θ (mas) r s (mas) PA

6.2-6.7 0.005-0.02 8.3 or 13.7 N/A



Literature data on σ Pup

- KIII spectral type

- Single lined spectroscopic 
binary (SB1) of P=257.8 days

- d = 56.3 pc,  μ = 0.164 Msun

Table 2. Orbital elements for σ Puppis (from Jancart et al. 2005).

HIP a0 e i ω1 Ω T0 P dist.

(mas) (◦) (◦) (◦) (JD) (d) (pc)

36377 8.32 ± 0.32 0.17 65.6 ± 3.3 349.3 0.0 ± 5.2 2451354.6 257.8 56.36

Table 3. Individual properties of the σ Puppis binary, and corresponding solutions for the orbit of the secondary. Columns are: Mass of Primary;
Size of Primary; Mass of Secondary; Size of secondary; Spectral Type of Secondary; magnitude difference secondary minus primary; semi major
axis of orbit of secondary; angular separation ri and position angle ωi for the two observation dates; variation in one day of the position.

M1 Φ1 M2 Φ2 Sp. Type ∆mv a R1
roche

r1 ω1 r2 ω2 ∆12
(M") (R") (M") (R") (secondary) (mag) (mas) (R") (mas) (mas) (◦) (mas) (◦) (mas)

5.0a 78 2.25 2.1b A3Vb 1.9b 51.2 621 23.0 46.8 247.1 45.90 248.5 1.13

1.2b 78 1.024 1.0b G2Vb 4.9b 15.7 224 6.15 14.3 247.1 14.05 248.5 0.35

a value from MSC catalog by Tokovinin (1997)
b taken from Schmidt-Kaler (1982)

4.2. Nature of the companion

All the orbital parameters being known, the knowledge of the
mass of the main component is sufficient to deduce the mass,
hence the spectral type, magnitude, and true orbit of the com-
panion star. Given the primary mass m1 and the Hipparcos in-
clination i, one solve the equation of mass for σ Puppis (Wilson
1918):

m
3
2
sin3 i

(m1 + m2)2
= 0.164M"

for the mass m2 of the secondary. The semi major axis a of the
orbit of the secondary obeys to the relation:

a0 = a

(

m2

m1 + m2
−

1

1 + 100.4∆M

)

where a0 is the Hipparcos (photometric) semi-major axis and the
second term depends on the magnitude difference ∆M between
the two components (Binnendijk 1960).

Unfortunately, there is no such thing as a unique mass-
luminosity function for giant stars, so m1 is uncertain and
companion masses cannot be derived reliably by this method.
Interferometry, especially “phase closure nulling” methods as
the one used here, can provide an independent measurement of
the position and magnitude of the secondary and remove the am-
biguities. In Paper I we show that, under certain conditions, the
spectrum of the companion can be retrieved, going one step fur-
ther in the knowledge of the binary system. In the present case,
had we another set of phase closure nulling with a different po-
sition angle, we would get an unambiguous position of the sec-
ondary, and the true orbit. In the absence of this triangulation,
we can only check whether our (projected) separation angle and
flux ratio are consistent with the known parameters of the binary.
Table 3 present results for two possible values of the mass of the
primary, the implied mass, spectral type and orbital elements of
the companion. The first value (5M") is the one quoted in the
MSC catalog (Tokovinin 1997), the second (1.2M") was ob-
tained using Table 21 of Schmidt-Kaler (1982).

As stated before, the simplest model in accordance with our
“phase closure nulling” observations is the presence of a point
source in the vicinity of the primary. This in turn implies a 5mag
difference, a size of the primary of 6.44 ± 0.02mas and two
possible projected separations for the secondary: around 8 and
14mas. These constraints on the flux ratio and the separation

Fig. 7. Best fit (black line) obtained on the complete series of 2008-
02-14 observations (3 hour span, black dots). 2008-02-13 data (2.6 hour
span, circles) obtained with the fringe tracker and a different set of cal-
ibrators, are overplotted for comparison.

rule out the 5M" hypothesis for the system. Instead, they are
in excellent agreement with an 1.2M" primary plus G2V sec-
ondary, for which the expected magnitude difference is 4.9mag
and the separation, at the time of our observations, is ∼ 14mas.

The fit on flux ratio and separation described in sec. 3.2 were
performed assuming a constant orientation of the baseline during
the observations. In practice, the latter varied by ±20◦ during the
observations.We can now refine our fit on the phase closure tran-
sition adding the PA as a 4th free parameter. Since the problem is
not well constrained, we limit our search around values for the
star diameter (6.44mas), separation (14mas), flux ratio (0.01),
and PA (247◦) that are compatible within a few sigma, with our
previous estimates and the orbital parameters of Table 2.

Figure 7 shows the best fit we obtain on the 14 February
data. It gives a diameter of 6.38mas, for the primary, a distance
of 14.2mas for the secondary at position angle 262◦, and a flux
ratio of 0.017. This is the best fit that reproduce both the slope
of phase closure at the location of the minimum and the value of
the phase closure obtained far from this minimum, at two hours
interval.

Table 2. Orbital elements for σ Puppis (from Jancart et al. 2005).

HIP a0 e i ω1 Ω T0 P dist.

(mas) (◦) (◦) (◦) (JD) (d) (pc)

36377 8.32 ± 0.32 0.17 65.6 ± 3.3 349.3 0.0 ± 5.2 2451354.6 257.8 56.36

Table 3. Individual properties of the σ Puppis binary, and corresponding solutions for the orbit of the secondary. Columns are: Mass of Primary;
Size of Primary; Mass of Secondary; Size of secondary; Spectral Type of Secondary; magnitude difference secondary minus primary; semi major
axis of orbit of secondary; angular separation ri and position angle ωi for the two observation dates; variation in one day of the position.
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5.0a 78 2.25 2.1b A3Vb 1.9b 51.2 621 23.0 46.8 247.1 45.90 248.5 1.13

1.2b 78 1.024 1.0b G2Vb 4.9b 15.7 224 6.15 14.3 247.1 14.05 248.5 0.35

a value from MSC catalog by Tokovinin (1997)
b taken from Schmidt-Kaler (1982)

4.2. Nature of the companion

All the orbital parameters being known, the knowledge of the
mass of the main component is sufficient to deduce the mass,
hence the spectral type, magnitude, and true orbit of the com-
panion star. Given the primary mass m1 and the Hipparcos in-
clination i, one solve the equation of mass for σ Puppis (Wilson
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where a0 is the Hipparcos (photometric) semi-major axis and the
second term depends on the magnitude difference ∆M between
the two components (Binnendijk 1960).

Unfortunately, there is no such thing as a unique mass-
luminosity function for giant stars, so m1 is uncertain and
companion masses cannot be derived reliably by this method.
Interferometry, especially “phase closure nulling” methods as
the one used here, can provide an independent measurement of
the position and magnitude of the secondary and remove the am-
biguities. In Paper I we show that, under certain conditions, the
spectrum of the companion can be retrieved, going one step fur-
ther in the knowledge of the binary system. In the present case,
had we another set of phase closure nulling with a different po-
sition angle, we would get an unambiguous position of the sec-
ondary, and the true orbit. In the absence of this triangulation,
we can only check whether our (projected) separation angle and
flux ratio are consistent with the known parameters of the binary.
Table 3 present results for two possible values of the mass of the
primary, the implied mass, spectral type and orbital elements of
the companion. The first value (5M") is the one quoted in the
MSC catalog (Tokovinin 1997), the second (1.2M") was ob-
tained using Table 21 of Schmidt-Kaler (1982).

As stated before, the simplest model in accordance with our
“phase closure nulling” observations is the presence of a point
source in the vicinity of the primary. This in turn implies a 5mag
difference, a size of the primary of 6.44 ± 0.02mas and two
possible projected separations for the secondary: around 8 and
14mas. These constraints on the flux ratio and the separation

Fig. 7. Best fit (black line) obtained on the complete series of 2008-
02-14 observations (3 hour span, black dots). 2008-02-13 data (2.6 hour
span, circles) obtained with the fringe tracker and a different set of cal-
ibrators, are overplotted for comparison.

rule out the 5M" hypothesis for the system. Instead, they are
in excellent agreement with an 1.2M" primary plus G2V sec-
ondary, for which the expected magnitude difference is 4.9mag
and the separation, at the time of our observations, is ∼ 14mas.

The fit on flux ratio and separation described in sec. 3.2 were
performed assuming a constant orientation of the baseline during
the observations. In practice, the latter varied by ±20◦ during the
observations.We can now refine our fit on the phase closure tran-
sition adding the PA as a 4th free parameter. Since the problem is
not well constrained, we limit our search around values for the
star diameter (6.44mas), separation (14mas), flux ratio (0.01),
and PA (247◦) that are compatible within a few sigma, with our
previous estimates and the orbital parameters of Table 2.

Figure 7 shows the best fit we obtain on the 14 February
data. It gives a diameter of 6.38mas, for the primary, a distance
of 14.2mas for the secondary at position angle 262◦, and a flux
ratio of 0.017. This is the best fit that reproduce both the slope
of phase closure at the location of the minimum and the value of
the phase closure obtained far from this minimum, at two hours
interval.
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4.2. Nature of the companion

All the orbital parameters being known, the knowledge of the
mass of the main component is sufficient to deduce the mass,
hence the spectral type, magnitude, and true orbit of the com-
panion star. Given the primary mass m1 and the Hipparcos in-
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luminosity function for giant stars, so m1 is uncertain and
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Interferometry, especially “phase closure nulling” methods as
the one used here, can provide an independent measurement of
the position and magnitude of the secondary and remove the am-
biguities. In Paper I we show that, under certain conditions, the
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rule out the 5M" hypothesis for the system. Instead, they are
in excellent agreement with an 1.2M" primary plus G2V sec-
ondary, for which the expected magnitude difference is 4.9mag
and the separation, at the time of our observations, is ∼ 14mas.

The fit on flux ratio and separation described in sec. 3.2 were
performed assuming a constant orientation of the baseline during
the observations. In practice, the latter varied by ±20◦ during the
observations.We can now refine our fit on the phase closure tran-
sition adding the PA as a 4th free parameter. Since the problem is
not well constrained, we limit our search around values for the
star diameter (6.44mas), separation (14mas), flux ratio (0.01),
and PA (247◦) that are compatible within a few sigma, with our
previous estimates and the orbital parameters of Table 2.

Figure 7 shows the best fit we obtain on the 14 February
data. It gives a diameter of 6.38mas, for the primary, a distance
of 14.2mas for the secondary at position angle 262◦, and a flux
ratio of 0.017. This is the best fit that reproduce both the slope
of phase closure at the location of the minimum and the value of
the phase closure obtained far from this minimum, at two hours
interval.
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Interferometry, especially “phase closure nulling” methods as
the one used here, can provide an independent measurement of
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biguities. In Paper I we show that, under certain conditions, the
spectrum of the companion can be retrieved, going one step fur-
ther in the knowledge of the binary system. In the present case,
had we another set of phase closure nulling with a different po-
sition angle, we would get an unambiguous position of the sec-
ondary, and the true orbit. In the absence of this triangulation,
we can only check whether our (projected) separation angle and
flux ratio are consistent with the known parameters of the binary.
Table 3 present results for two possible values of the mass of the
primary, the implied mass, spectral type and orbital elements of
the companion. The first value (5M") is the one quoted in the
MSC catalog (Tokovinin 1997), the second (1.2M") was ob-
tained using Table 21 of Schmidt-Kaler (1982).

As stated before, the simplest model in accordance with our
“phase closure nulling” observations is the presence of a point
source in the vicinity of the primary. This in turn implies a 5mag
difference, a size of the primary of 6.44 ± 0.02mas and two
possible projected separations for the secondary: around 8 and
14mas. These constraints on the flux ratio and the separation

Fig. 7. Best fit (black line) obtained on the complete series of 2008-
02-14 observations (3 hour span, black dots). 2008-02-13 data (2.6 hour
span, circles) obtained with the fringe tracker and a different set of cal-
ibrators, are overplotted for comparison.

rule out the 5M" hypothesis for the system. Instead, they are
in excellent agreement with an 1.2M" primary plus G2V sec-
ondary, for which the expected magnitude difference is 4.9mag
and the separation, at the time of our observations, is ∼ 14mas.

The fit on flux ratio and separation described in sec. 3.2 were
performed assuming a constant orientation of the baseline during
the observations. In practice, the latter varied by ±20◦ during the
observations.We can now refine our fit on the phase closure tran-
sition adding the PA as a 4th free parameter. Since the problem is
not well constrained, we limit our search around values for the
star diameter (6.44mas), separation (14mas), flux ratio (0.01),
and PA (247◦) that are compatible within a few sigma, with our
previous estimates and the orbital parameters of Table 2.

Figure 7 shows the best fit we obtain on the 14 February
data. It gives a diameter of 6.38mas, for the primary, a distance
of 14.2mas for the secondary at position angle 262◦, and a flux
ratio of 0.017. This is the best fit that reproduce both the slope
of phase closure at the location of the minimum and the value of
the phase closure obtained far from this minimum, at two hours
interval.



Literature data on σ Pup

- KIII spectral type

- Single lined spectroscopic 
binary (SB1) of P=257.8 days

- d = 56.3 pc,  μ = 0.164 Msun

Table 2. Orbital elements for σ Puppis (from Jancart et al. 2005).

HIP a0 e i ω1 Ω T0 P dist.

(mas) (◦) (◦) (◦) (JD) (d) (pc)

36377 8.32 ± 0.32 0.17 65.6 ± 3.3 349.3 0.0 ± 5.2 2451354.6 257.8 56.36

Table 3. Individual properties of the σ Puppis binary, and corresponding solutions for the orbit of the secondary. Columns are: Mass of Primary;
Size of Primary; Mass of Secondary; Size of secondary; Spectral Type of Secondary; magnitude difference secondary minus primary; semi major
axis of orbit of secondary; angular separation ri and position angle ωi for the two observation dates; variation in one day of the position.

M1 Φ1 M2 Φ2 Sp. Type ∆mv a R1
roche

r1 ω1 r2 ω2 ∆12
(M") (R") (M") (R") (secondary) (mag) (mas) (R") (mas) (mas) (◦) (mas) (◦) (mas)

5.0a 78 2.25 2.1b A3Vb 1.9b 51.2 621 23.0 46.8 247.1 45.90 248.5 1.13

1.2b 78 1.024 1.0b G2Vb 4.9b 15.7 224 6.15 14.3 247.1 14.05 248.5 0.35

a value from MSC catalog by Tokovinin (1997)
b taken from Schmidt-Kaler (1982)

4.2. Nature of the companion

All the orbital parameters being known, the knowledge of the
mass of the main component is sufficient to deduce the mass,
hence the spectral type, magnitude, and true orbit of the com-
panion star. Given the primary mass m1 and the Hipparcos in-
clination i, one solve the equation of mass for σ Puppis (Wilson
1918):
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= 0.164M"

for the mass m2 of the secondary. The semi major axis a of the
orbit of the secondary obeys to the relation:
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Figure 7 shows the best fit we obtain on the 14 February
data. It gives a diameter of 6.38mas, for the primary, a distance
of 14.2mas for the secondary at position angle 262◦, and a flux
ratio of 0.017. This is the best fit that reproduce both the slope
of phase closure at the location of the minimum and the value of
the phase closure obtained far from this minimum, at two hours
interval.

Table 2. Orbital elements for σ Puppis (from Jancart et al. 2005).

HIP a0 e i ω1 Ω T0 P dist.

(mas) (◦) (◦) (◦) (JD) (d) (pc)

36377 8.32 ± 0.32 0.17 65.6 ± 3.3 349.3 0.0 ± 5.2 2451354.6 257.8 56.36

Table 3. Individual properties of the σ Puppis binary, and corresponding solutions for the orbit of the secondary. Columns are: Mass of Primary;
Size of Primary; Mass of Secondary; Size of secondary; Spectral Type of Secondary; magnitude difference secondary minus primary; semi major
axis of orbit of secondary; angular separation ri and position angle ωi for the two observation dates; variation in one day of the position.

M1 Φ1 M2 Φ2 Sp. Type ∆mv a R1
roche

r1 ω1 r2 ω2 ∆12
(M") (R") (M") (R") (secondary) (mag) (mas) (R") (mas) (mas) (◦) (mas) (◦) (mas)

5.0a 78 2.25 2.1b A3Vb 1.9b 51.2 621 23.0 46.8 247.1 45.90 248.5 1.13

1.2b 78 1.024 1.0b G2Vb 4.9b 15.7 224 6.15 14.3 247.1 14.05 248.5 0.35

a value from MSC catalog by Tokovinin (1997)
b taken from Schmidt-Kaler (1982)

4.2. Nature of the companion

All the orbital parameters being known, the knowledge of the
mass of the main component is sufficient to deduce the mass,
hence the spectral type, magnitude, and true orbit of the com-
panion star. Given the primary mass m1 and the Hipparcos in-
clination i, one solve the equation of mass for σ Puppis (Wilson
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luminosity function for giant stars, so m1 is uncertain and
companion masses cannot be derived reliably by this method.
Interferometry, especially “phase closure nulling” methods as
the one used here, can provide an independent measurement of
the position and magnitude of the secondary and remove the am-
biguities. In Paper I we show that, under certain conditions, the
spectrum of the companion can be retrieved, going one step fur-
ther in the knowledge of the binary system. In the present case,
had we another set of phase closure nulling with a different po-
sition angle, we would get an unambiguous position of the sec-
ondary, and the true orbit. In the absence of this triangulation,
we can only check whether our (projected) separation angle and
flux ratio are consistent with the known parameters of the binary.
Table 3 present results for two possible values of the mass of the
primary, the implied mass, spectral type and orbital elements of
the companion. The first value (5M") is the one quoted in the
MSC catalog (Tokovinin 1997), the second (1.2M") was ob-
tained using Table 21 of Schmidt-Kaler (1982).

As stated before, the simplest model in accordance with our
“phase closure nulling” observations is the presence of a point
source in the vicinity of the primary. This in turn implies a 5mag
difference, a size of the primary of 6.44 ± 0.02mas and two
possible projected separations for the secondary: around 8 and
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02-14 observations (3 hour span, black dots). 2008-02-13 data (2.6 hour
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rule out the 5M" hypothesis for the system. Instead, they are
in excellent agreement with an 1.2M" primary plus G2V sec-
ondary, for which the expected magnitude difference is 4.9mag
and the separation, at the time of our observations, is ∼ 14mas.

The fit on flux ratio and separation described in sec. 3.2 were
performed assuming a constant orientation of the baseline during
the observations. In practice, the latter varied by ±20◦ during the
observations.We can now refine our fit on the phase closure tran-
sition adding the PA as a 4th free parameter. Since the problem is
not well constrained, we limit our search around values for the
star diameter (6.44mas), separation (14mas), flux ratio (0.01),
and PA (247◦) that are compatible within a few sigma, with our
previous estimates and the orbital parameters of Table 2.

Figure 7 shows the best fit we obtain on the 14 February
data. It gives a diameter of 6.38mas, for the primary, a distance
of 14.2mas for the secondary at position angle 262◦, and a flux
ratio of 0.017. This is the best fit that reproduce both the slope
of phase closure at the location of the minimum and the value of
the phase closure obtained far from this minimum, at two hours
interval.



Error analysis

in the photon noise regime.

- formula valid even outside of the null

- independent of the spatial frequency u and the spectral 
resolution R

- 3/(ρ0S√r) worse than direct detection

for the companion flux rK



Detecting hot Jupiters with the VLTI

• Goal: to investigate the 
potentiality of the VLTI 
with 4 telescopes (VSI)

• to understand the limits 
of the phase closure 
technique

• to be able to propose an 
actual experiment with 
present instrument 
(AMBER)
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Expected performances on actual stars
3.3. Error analysis

We consider for simplicity an interferometer formed by Ntel

aligned telescopes in a non-redundant configuration. We assume
also that the direction of observation vary little during the experi-
ment so that the double system is characterized by only 3 param-
eters: the stellar angular radius R!, the flux ratio r and the pro-
jected separation s along the direction of observation. Spectrally
dispersed phase closure measurements are performed as a func-
tion of the spatial frequency, and then fitted, with a 3 parameters
model.

The limiting noises in optical interferometry, from the vis-
ible to the near infrared, are the atmospheric noise, the photon
noise from the source and the detector readout noise. General
expressions of the errors on the parameters of the double system
are derived in AppendixA. In the photon noise regime, the errors
reach their minimum values and then keep constant as soon as
the working frequency domains cover at least one period s−1. For
separations larger than a few stellar radii and working frequency
intervals larger than s−1, the error on the flux ratio and that on
the separation, with a 3 telescopes interferometer, are given by:

σ(r) ≈
3

ρ0 S̄
√
K

(8)

σ(s/R!) ≈
1

r ρ0 S̄
√
K

( 0.61

ūmax R!

)

(9)

where K is the total number of photoevents detected during the
whole observation, ūmax is the average frequency of the largest
baseline and ρ0S̄ is the effective Strehl.

These formula have been checked numerically through a rig-
orous error analysis. They are valid everywhere, even around the
nulls. Besides the fact that the error on the separation is inversely
proportional to the maximum frequency, the errors are indepen-
dent on the working frequency domains. This clearly reinforces
the usefulness to observe around visibility nulls, where the use-
ful phase closure signal is dominant. The error on the flux ra-
tio depends only on the total number of collected photoevents,
while that on the distance is also inversely proportional to the
flux ratio. In the photon noise regime, both errors are indepen-
dent on the spectral resolution R, as long as the spectral averag-
ing is performed over less than half a period 1/2 s, that is when
ūmaxR−1<0.5 s−1. This condition provides a maximum recover-
able distance imposed by the spectral resolution of:

smax

R!
≈ R ×

(

0.61

ūmaxR!

)

(10)

The error on the flux of the companion is:

σ(rK) ≈
3
√
K

ρ0S̄
(11)

The direct photometric detection of the companion would pro-

vide an error of
√
rK. In terms of performances, the direct detec-

tion is 3/(ρ0S̄
√
r) better than the detection from phase closure.

However, this is the price to pay for, to our knowledge, there is
no other direct method than the one we propose, capable of de-
tecting stellar companions within an Airy disk, and at distance
from the hosting star, as small as a few stellar radii. Once the
conditions above are fulfilled, measuring the flux ratio for each
spectral element at resolution R is an effective way to measure
the companion spectrum.

Fig. 4. a (top): Error on the flux ratio of a double system from the clo-
sure phase information of a 3 telescopes interferometer. The signal is
made by 900 phase closure regularly sampled within the working fre-
quency intervals, and spectrally dispersed along 270 spectral channels,
with a spectral resolution of 1500. The experimental parameters are:
observing wavelength: 1.65µm, optical bandwidth: 0.3µm, total inte-
gration time: 3 hours, integration time per frame: 0.2s, detector readout
noise: 10e−, 32 pixels per frame. The calculations have been made tak-
ing into account the photon noise and the detector readout noise. Three
cases have been considered: 3 telescopes with diameter D=2m, S=0.5
and 1% total transmission (upper curve, this case corresponds roughly
to the present state of the AMBER experiment on the VLTI), D=2m,
S=0.9 and 10% total transmission (middle curve), D=8m, S=0.5 and
10% transmission (lower curve). The broken lines correspond to an in-
tegration time per frame of 12 seconds. Are represented: Sirius with a
possible M dwarf companion (Benest & Duvent 1995), the giant K5
star σ Puppis with its G2 dwarf companion (Duvert et al. 2008), and
two stars with known planetary companions. b (bottom): Baseline nec-
essary to resolve the primary star in the H band at 1.65µm, that is to
reach the first visibility null, for late dwarfs and giants. The horizontal
line at 200m corresponds to the maximum baseline of the VLTI. Note
that the sun at 10pc is resolved with a 1km baseline.

3.4. Performances

The mean error on the flux ratio in the H band at 1.65µm, from
a 3 telescopes interferometer and an integration time of 3 hours,
obtained by averaging all the spectral channels over an optical
bandwidth of 0.3µm, is plotted in Fig. 4a. The upper curves cor-
respond to 3 telescopes of 2m, 1% transmission and a Strehl ra-
tio of 0.5. It roughly represents the present state of the AMBER
instrument on the VLTI with Auxiliary telescopes. The middle
and lower curves corresponds to telescopes of 2m and 8m, a
transmission of 10%, and Strehl ratios of 0.9 and 0.5, respec-
tively (see the caption of Fig. 4 for details).

If we assume a signal to noise ratio of 10 on the flux ratio for
a positive detection, then the AMBER instrument with Auxiliary
telescopes would allow to detect companions 104 fainter around
negative magnitude stars and 103 fainter around third magni-

- R =1500 (270 channels)
- 900 CPs sampled regularly
- H band (1.65 μm)
- 3 hours of integration
- 3 scenarios:

- D=2m, S=0.5, τ=1%
- D=2m, S=0.9, τ=10%
- D=8m, S=0.5, τ=10%

DIT=0.2ms
DIT=12s



Already reached performances
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Figure 5. Preliminary results on υ And. Every single point in the top panel of each plot is an average of 3 files,
corresponding to an integration time of 16 sec, while the points in the middle and bottom panel are average of 30 files
and 60 files, corresponding to 160 sec and 320 sec of integration time respectively. The solid lines indicate the averaged

closure phases for each panel, while the dashed lines indicate 1-σ deviation from the average. The top two plots show the
results using the telescope triangle E2-W1-W2 which has a resolution of 0.7 mas. The bottom two show the results using
the triangle S1-E1-W1 which has the highest resolution, 0.5 mas, among all the baselines of CHARA. MIRC wavelength

channel numbers are indicated at the top of each plot. Channel 0, 3, 4 correspond to 1.76µm, 1.66 µm, and 1.63 µm,
respectively.

have significant improvement to the system throughput, data collection, calibration, and data analysis. We have
plans in the following aspects to help us reach this goal in the near future.

First, our investigation of the August and November data of 2007 shows the total throughput of CHARA
and MIRC is ∼ 0.3% under good seeing conditions. In theory, the total throughput of the whole system should
be 3%, indicating there is a factor of 10 extra loss of light. We think this factor of 10 can be break into a factor
of 7 loss due to the transmission of the CHARA beams, and another factor of 3 due to the coupling of light into
the MIRC fibers, which is most probably caused by the image quality of the CHARA beams. These problems
are fixable and CHARA is implementing a new telescope alignment system to improve the image quality. Once
the system is installed, we can expect a factor of at least 2-3 increase to the throughput.

Second, the CHAMP instrument,35 a fringe tracker for MIRC, will be commissioned soon by the end of this
year. The use of CHAMP will help us to “freeze” the fringes and increase the coherent time for data collection,
which will increase the S/N of the data.

Third, a photometric channel for MIRC beams will be installed. It will help us to better calibrate the flux
variations of each beam, and also increase the data collection efficiency by a factor of 1.5 - 2 since we will be
able to collect data continuously and do not need to stop for as much shutter data.

Zhao et al. (SPIE 2008)



Other topics
- Number of stars accessible

• 100 in K for VLTI
• 500 in J for VLTI

- Planet, wave, wind signatures in 
protoplanetary disks

- Cataclismic variables

- Active galactic nuclei

- Protoplanetary nebulae

- disk around hot stars

- companion of evolved stars

- companion of MS stars

tude stars. Spectroscopy would be possible from flux ratios of
a few 10−4. Optimized interferometers with 10% transmission
(Fig. 4, middle and bottom curves) would allow the detection
of companions 105 fainter around negative magnitude stars and
103 fainter around 7 to 9 magnitude stars. Spectroscopy would
be possible from flux ratios of a few 10−5.

Figure 4b shows the baseline necessary to resolve the pri-
mary star, that is to reach the first visibility null, for late dwarfs
and giants. The horizontal line at 200m corresponds to the max-
imum baseline of the VLTI, which imposes maximum H mag-
nitudes of about 2.5 and 1.5 for M0 dwarves and giants, respec-
tively. Note also that the field of view of fiber linked interfer-
ometers is limited to one Airy disk λ/D, where D is the tele-
scope diameter. Given that the baseline to reach the first null is
B = 0.61λ/R", it gives a maximum recoverable separation of
about B/D stellar radii, that is 100 stellar radii on the VLTI with
2m telescopes. A baseline of 1000m necessary to resolve a so-
lar type star at a distance of 10pc, would provide a field of 500
stellar radii.

As specified in section 3.3, in the photon noise regime, the
minimum error is attained when the working frequency intervals
cover at least one period s−1. This implies, for the first null, a
baseline variation ∆B of:

∆B ≈ 2
B

s/R"
(12)

At kilometric baselines, it represents a variation of 200m for a
distance of 10 stellar radii. The simplest way to achieve such
variations is to use earth rotation together with repositionable
telescopes located at such positions that the baselines and orien-
tations optimize the observing time around the nulls. However,
the double system may also be characterized, at the price of a
lower signal to noise ratio, even if the working frequency inter-
vals cover much less than a period. Indeed, the companion of
the spectroscopic binary σ Puppis has been detected and char-
acterized with only 3 snapshot observations of 5 minutes each;
before, during and after the null, using the spectral dimension to
increase the frequency coverage.

4. Discussion

4.1. Science cases

We have demonstrated that a phase closure nulling experiment
can bring astrophysically important information on the close en-
vironment of resolved stars. Figure 5 shows the lower limit of
the number of targets available to phase closure nulling experi-
ments as a function of baseline length. The minimum number of
targets available for current arrays like VLTI is ≈100 in K and
≈500 in J. The technique is not limited to observation of unbal-
anced binary systems but can also address a broader range of
topics. These topics may change either by changing the nature
of the resolved bright astrophysical target and/or the off-axis ac-
companying astrophysical signal.

In star and planet formation, astronomers are interested in
protoplanetary disks which in general have the property to be
centro-symmetric so that the phase closure signal is zero. Any
perturbating signal located off-axis can then be detected by clo-
sure phase nulling: inhomogeneities on the disk surface, pres-
ence of a forming planetesimal, presence of a collimated jet of
outflowing wind partially screened by the disk. It applies also to
other science cases holding a disk like cataclysmic variables, ac-
tive galactic nuclei, proplanetary nebulae, gaseous disk around
hot stars. The case of exoplanets is of particular interest but the

Fig. 5. Cumulative number of stars resolved at a given baseline in the J,
H and K bands. The sample has been obtained with the SearchCalutility
(Bonneau et al. 2006) and is limited to the stars whose apparent diam-
eter can be reliably estimated from parallax and (spectro)photometric
measurements available at CDS. Note that these numbers are lower lim-
its given the uncompleteness of the various catalogs used.

various flavours of binarymust not be forgotten involving young,
main sequence or evolved stars and even in the case of merging
binaries.

In a future where interferometry will be sensitive to fainter
targets, a possible application of this technique is the detection
of the gravitational images due to a massive gravitational lens
spatially resolved.

In the following sections, we restrict ourselves to the com-
panion of evolved and main sequence stars.

4.1.1. Companions of Evolved Stars

Clearly the simplest observational case, already permitted with
current interferometers, is the study of close companions to
giant stars. The scientific interest is twofold: improving our
knowledge of the masses of giant stars, and detecting plane-
tary systems around earlier-type stars than the ones known to
date. It is indeed customary to look for companions of stars of
masses >1.2R#, not in their main-sequence phase, where radial
velocity measurements are rendered difficult by the paucity of
spectral lines (furthermore broadened by the rapid stellar rota-
tion), but in their giant, cooler, phase. However the detection
of substellar companions around giant stars using radial veloc-
ities has always been problematic because the intrinsic pulsa-
tion of those stars would mimic the signature of a close substel-
lar companion, and radial profiles can be altered by the pres-
ence of large, slowly rotating, cool spots on the surface. Only
a few detections have been reported to date (Hatzes & Cochran
1998; Hatzes et al. 2005; Döllinger et al. 2007). The phase clo-
sure nulling would provide a completely independent method to
characterize at least the closest companions, and give the orbit
needed to measure individual masses.

We demonstrate this very possibility in a companion paper
(Duvert et al. 2008), where we apply the phase closure nulling
method for the detection of the close (≈4R") companion of the
star SigmaPuppis and the characterisation of this SB1 binary
system.


